Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3137, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605004

RESUMO

Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the polymeric materials used in LS. This constrains the functionality of the items produced, including limited available colours. Moreover, PA-12 objects tend to biofoul in wet environments. Therefore, a key challenge is to develop an inexpensive route to introduce desirable functionality to PA-12. We report a facile, clean, and scalable approach to modification of PA-12, exploiting supercritical carbon dioxide (scCO2) and free radical polymerizations to yield functionalised PA-12 materials. These can be easily printed using commercial apparatus. We demonstrate the potential by creating coloured PA-12 materials and show that the same approach can be utilized to create anti-biofouling objects. Our approach to functionalise materials could open significant new applications for AM.

2.
Colloids Surf B Biointerfaces ; 236: 113828, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452625

RESUMO

Despite the success of polyethylene glycol-based (PEGylated) polyesters in the drug delivery and biomedical fields, concerns have arisen regarding PEG's immunogenicity and limited biodegradability. In addition, inherent limitations, including limited chemical handles as well as highly hydrophobic nature, can restrict their effectiveness in physiological conditions of the polyester counterpart. To address these matters, an increasing amount of research has been focused towards identifying alternatives to PEG. One promising strategy involves the use of bio-derived polyols, such as glycerol. In particular, glycerol is a hydrophilic, non-toxic, untapped waste resource and as other polyols, can be incorporated into polyesters via enzymatic catalysis routes. In the present study, a systematic screening is conducted focusing on the incorporation of 1,6-hexanediol (Hex) (hydrophobic diol) into both poly(glycerol adipate) (PGA) and poly(diglycerol adipate) (PDGA) at different (di)glycerol:hex ratios (30:70; 50:50 and 70:30 mol/mol) and its effect on purification upon NPs formation. By varying the amphiphilicity of the backbone, we demonstrated that minor adjustments influence the NPs formation, NPs stability, drug encapsulation, and degradation of these polymers, despite the high chemical similarity. Moreover, the best performing materials have shown good biocompatibility in both in vitro and in vivo (whole organism) tests. As preliminary result, the sample containing diglycerol and Hex in a 70:30 ratio, named as PDGA-Hex 30%, has shown to be the most promising candidate in this small library analysed. It demonstrated comparable stability to the glycerol-based samples in various media but exhibited superior encapsulation efficiency of a model hydrophobic dye. This in-depth investigation provides new insights into the design and modification of biodegradable (di)glycerol-based polyesters, potentially paving the way for more effective and sustainable PEG-free drug delivery nano-systems in the pharmaceutical and biomedical fields.


Assuntos
Nanopartículas , Poliésteres , Poliésteres/química , Glicerol/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Preparações Farmacêuticas , Adipatos , Nanopartículas/química
3.
Green Chem ; 26(3): 1345-1355, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38323306

RESUMO

Volumetric Additive Manufacturing (VAM) represents a revolutionary advancement in the field of Additive Manufacturing, as it allows for the creation of objects in a single, cohesive process, rather than in a layer-by-layer approach. This innovative technique offers unparalleled design freedom and significantly reduces printing times. A current limitation of VAM is the availability of suitable resins with the required photoreactive chemistry and from sustainable sources. To support the application of this technology, we have developed a sustainable resin based on polyglycerol, a bioderived (e.g., vegetable origin), colourless, and easily functionisable oligomer produced from glycerol. To transform polyglycerol-6 into an acrylate photo-printable resin we adopted a simple, one-step, and scalable synthesis route. Polyglycerol-6-acrylate fulfils all the necessary criteria for volumetric printing (transparency, photo-reactivity, viscosity) and was successfully used to print a variety of models with intricate geometries and good resolution. The waste resin was found to be reusable with minimal performance issues, improving resin utilisation and minimising waste material. Furthermore, by incorporating dopants such as poly(glycerol) adipate acrylate (PGA-A) and 10,12-pentacosadyinoic acid (PCDA), we demonstrated the ability to print objects with a diverse range of functionalities, including temperature sensing probes and a polyester excipient, highlighting the potential applications of these new resins.

4.
Chem Commun (Camb) ; 59(98): 14536-14539, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37986574

RESUMO

A new, robust methodology for the synthesis of polystyrene-poly(methyl methacrylate) (PS-PMMA) core-shell particles using seeded dispersion polymerisation in supercritical carbon dioxide is reported, where the core-shell ratio can be controlled predictably via manipulation of reagent stoichiometry. The key development is the application of an iterative addition of the MMA shell monomer to the pre-prepared PS core. Analysis of the materials with differing core-shell ratios indicates that all are isolated as single particle populations with distinct and controllable core-shell morphologies.

5.
J Colloid Interface Sci ; 641: 1043-1057, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36996683

RESUMO

Sustainably derived poly(glycerol adipate) (PGA) has been deemed to deliver all the desirable features expected in a polymeric scaffold for drug-delivery, including biodegradability, biocompatibility, self-assembly into nanoparticles (NPs) and a functionalisable pendant group. Despite showing these advantages over commercial alkyl polyesters, PGA suffers from a series of key drawbacks caused by poor amphiphilic balance. This leads to weak drug-polymer interactions and subsequent low drug-loading in NPs, as well as low NPs stability. To overcome this, in the present work, we applied a more significant variation of the polyester backbone while maintaining mild and sustainable polymerisation conditions. We have investigated the effect of the variation of both hydrophilic and hydrophobic segments upon physical properties and drug interactions as well as self-assembly and NPs stability. For the first time we have replaced glycerol with the more hydrophilic diglycerol, as well as adjusting the final amphiphilic balance of the polyester repetitive units by incorporating the more hydrophobic 1,6-n-hexanediol (Hex). The properties of the novel poly(diglycerol adipate) (PDGA) variants have been compared against known polyglycerol-based polyesters. Interestingly, while the bare PDGA showed improved water solubility and diminished self-assembling ability, the Hex variation demonstrated enhanced features as a nanocarrier. In this regard, PDGAHex NPs were tested for their stability in different environments and for their ability to encode enhanced drug loading. Moreover, the novel materials have shown good biocompatibility in both in vitro and in vivo (whole organism) experiments.


Assuntos
Glicerol , Nanopartículas , Sistemas de Liberação de Medicamentos , Poliésteres/química , Preparações Farmacêuticas , Adipatos/química , Nanopartículas/química , Portadores de Fármacos/química
6.
Sci Rep ; 13(1): 3664, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871097

RESUMO

The evaluation of two terpene-derived polymers, termed TPA6 and TPA7, as possible consolidants for archaeological wood was carried out. The overall objective of this work was to expand the non-aqueous treatment toolkit which is available for the conservation of the highly degraded Oseberg collection. The wood artefacts which were found on the Oseberg ship were treated with alum in the early twentieth century, leading to the formation of sulfuric acid and to the precarious state that they are in today. Some of these artefacts cannot be treated with conventional aqueous consolidants, like polyethylene glycol, due to their highly degraded and/or reconstructed nature. This study sought to examine the level of penetration of the polymers in archaeological wood and to evaluate their consolidative effect. Both TPA6 and TPA7 were soluble in isopropanol and had a Mw of 3.9 and 4.2 kDa respectively. A number of archaeological wood specimens were immersed in solutions of these polymers. Their penetration and effects were evaluated using weight and dimensional change, colour change, infrared spectroscopy, scanning electron microscopy and hardness tests. Both polymers successfully penetrated the wood specimens, with a higher concentration found on the surface versus the core. Additionally, both polymers appeared to increase the hardness of the specimen surfaces. Increasing the polymer concentration and soaking time in future investigations could potentially facilitate the penetration to the wood cores.

7.
Biomacromolecules ; 24(2): 576-591, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36599074

RESUMO

Presented in this work is the use of a molecular descriptor, termed the α parameter, to aid in the design of a series of novel, terpene-based, and sustainable polymers that were resistant to biofilm formation by the model bacterial pathogen Pseudomonas aeruginosa. To achieve this, the potential of a range of recently reported, terpene-derived monomers to deliver biofilm resistance when polymerized was both predicted and ranked by the application of the α parameter to key features in their molecular structures. These monomers were derived from commercially available terpenes (i.e., α-pinene, ß-pinene, and carvone), and the prediction of the biofilm resistance properties of the resultant novel (meth)acrylate polymers was confirmed using a combination of high-throughput polymerization screening (in a microarray format) and in vitro testing. Furthermore, monomers, which both exhibited the highest predicted biofilm anti-biofilm behavior and required less than two synthetic stages to be generated, were scaled-up and successfully printed using an inkjet "valve-based" 3D printer. Also, these materials were used to produce polymeric surfactants that were successfully used in microfluidic processing to create microparticles that possessed bio-instructive surfaces. As part of the up-scaling process, a novel rearrangement was observed in a proposed single-step synthesis of α-terpinyl methacrylate via methacryloxylation, which resulted in isolation of an isobornyl-bornyl methacrylate monomer mixture, and the resultant copolymer was also shown to be bacterial attachment-resistant. As there has been great interest in the current literature upon the adoption of these novel terpene-based polymers as green replacements for petrochemical-derived plastics, these observations have significant potential to produce new bio-resistant coatings, packaging materials, fibers, medical devices, etc.


Assuntos
Biofilmes , Terpenos , Terpenos/farmacologia , Polímeros/química , Bactérias , Metacrilatos
8.
Sci Rep ; 12(1): 18411, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319651

RESUMO

The Oseberg Viking ship burial is one of the most extensive collections of Viking wooden artefacts ever excavated in Norway. In the early twentieth century, many of these artefacts were treated with alum in order to preserve them, inadvertently leading to their current degraded state. It is therefore crucial to develop new bioinspired polymers which could be used to conserve these artefacts and prevent further disintegration. Two hydroxylated polymers were synthesised (TPA6 and TPA7), using α-pinene- and oleic acid-derived monomers functionalised with an acrylate moiety. Characterisation using biomolecular hydrodynamics (analytical ultracentrifugation and high precision viscometry) has shown that these polymers have properties which would potentially make them good wood consolidants. Conformation analyses with the viscosity increment (ν) universal hydrodynamic parameter and ELLIPS1 software showed that both polymers had extended conformations, facilitating in situ networking when applied to wood. SEDFIT-MSTAR analyses of sedimentation equilibrium data indicates a weight average molar mass Mw of (3.9 ± 0.8) kDa and (4.2 ± 0.2) kDa for TPA6 and TPA7 respectively. Analyses with SEDFIT (sedimentation velocity) and MultiSig however revealed that TPA7 had a much greater homogeneity and a lower proportion of aggregation. These studies suggest that both these polymers-particularly TPA7-have characteristics suitable for wood consolidation, such as an optimal molar mass, conformation and a hydroxylated nature, making them interesting leads for further research.


Assuntos
Hidrodinâmica , Polímeros , Ácido Oleico , Ultracentrifugação
9.
Polym Chem ; 13(42): 6032-6045, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353599

RESUMO

N-Hydroxyethyl acrylamide was used as a functional initiator for the enzymatic ring-opening polymerisation of ε-caprolactone and δ-valerolactone. N-Hydroxyethyl acrylamide was found not to undergo self-reaction in the presence of Lipase B from Candida antarctica under the reaction conditions employed. By contrast, this is a major problem for 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate which both show significant transesterification issues leading to unwanted branching and cross-linking. Surprisingly, N-hydroxyethyl acrylamide did not react fully during enzymatic ring-opening polymerisation. Computational docking studies helped us understand that the initiated polymer chains have a higher affinity for the enzyme active site than the initiator alone, leading to polymer propagation proceeding at a faster rate than polymer initiation leading to incomplete initiator consumption. Hydroxyl end group fidelity was confirmed by organocatalytic chain extension with lactide. N-Hydroxyethyl acrylamide initiated polycaprolactones were free-radical copolymerised with PEGMA to produce a small set of amphiphilic copolymers. The amphiphilic polymers were shown to self-assemble into nanoparticles, and to display low cytotoxicity in 2D in vitro experiments. To increase the green credentials of the synthetic strategies, all reactions were carried out in 2-methyl tetrahydrofuran, a solvent derived from renewable resources and an alternative for the more traditionally used fossil-based solvents tetrahydrofuran, dichloromethane, and toluene.

10.
J Mater Chem B ; 10(20): 3895-3905, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35470847

RESUMO

New materials chemistries are urgently needed to overcome the limitations of existing biomedical materials in terms of preparation, functionality and versatility, and also in regards to their compatibility with biological environments. Here, we show that Passerini reactions are especially suited for the preparation of drug delivery materials, as with relatively few steps, polymers can be synthesized with functionality installed enabling drug conjugation and encapsulation, self-assembly into micellar or vesicular architectures, and with facile attachment triggerable chemistries. The polymers can be made with a variety of building blocks and assemble into nanoparticles, which are rapidly internalized in triple negative breast cancer (TNBC) cells. In addition, the polymers transport drug molecules efficiently through 3D cell cultures, and when designed with chemistries allowing pH-mediated release, exhibit greater efficacy against TNBC cells compared to the parent drug.


Assuntos
Nanopartículas , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Sistemas de Liberação de Medicamentos , Humanos , Polímeros/uso terapêutico , Pró-Fármacos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
11.
Polym Chem ; 12(20): 2992-3003, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-34122625

RESUMO

Sustainable and biobased surfactants are required for a wide range of everyday applications. Key drivers are cost, activity and efficiency of production. Polycondensation is an excellent route to build surfactant chains from bio-sourced monomers, but this typically requires high processing temperatures (≥200 °C) to remove the condensate and to lower viscosity of the polymer melt. In addition, high temperatures also increase the degree of branching and cause discolouration through the degradation of sensitive co-initiators and monomers. Here we report the synthesis of novel surface-active polymers from temperature sensitive renewable building blocks such as dicarboxylic acids, polyols (d-sorbitol) and fatty acids. We demonstrate that the products have the potential to be key components in renewable surfactant design, but only if the syntheses are optimised to ensure linear chains with hydrophilic character. The choice of catalyst is key to this control and we have assessed three different approaches. Additionally, we also demonstrate that use of supercritical carbon dioxide (scCO2) can dramatically improve conversion by reducing reaction viscosity, lowering reaction temperature, and driving condensate removal. We also evaluate the performance of the new biobased surfactants, focussing upon surface tension, and critical micelle concentration.

12.
Polymers (Basel) ; 13(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070820

RESUMO

New bio-based polymers capable of either outperforming fossil-based alternatives or possessing new properties and functionalities are of relevant interest in the framework of the circular economy. In this work, a novel bio-based polycarvone acrylate di-epoxide (PCADE) was used as an additive in a one-step straightforward electrospinning process to endow the fibres with functionalisable epoxy groups at their surface. To demonstrate the feasibility of the approach, poly(vinylidene fluoride) (PVDF) fibres loaded with different amounts of PCADE were prepared. A thorough characterisation by TGA, DSC, DMTA and XPS showed that the two polymers are immiscible and that PCADE preferentially segregates at the fibre surface, thus developing a very simple one-step approach to the preparation of ready-to-use surface functionalisable fibres. We demonstrated this by exploiting the epoxy groups at the PVDF fibre surface in two very different applications, namely in epoxy-based carbon fibre reinforced composites and membranes for ω-transaminase enzyme immobilisation for heterogeneous catalysis.

13.
Sci Rep ; 11(1): 7343, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795726

RESUMO

There is currently a pressing need for the development of novel bioinspired consolidants for waterlogged, archaeological wood. Bioinspired materials possess many advantages, such as biocompatibility and sustainability, which makes them ideal to use in this capacity. Based on this, a polyhydroxylated monomer was synthesised from α-pinene, a sustainable terpene feedstock derived from pine trees, and used to prepare a low molar mass polymer TPA5 through free radical polymerisation. This polymer was extensively characterised by NMR spectroscopy (chemical composition) and molecular hydrodynamics, primarily using analytical ultracentrifugation reinforced by gel filtration chromatography and viscometry, in order to investigate whether it would be suitable for wood consolidation purposes. Sedimentation equilibrium indicated a weight average molar mass Mw of (4.3 ± 0.2) kDa, with minimal concentration dependence. Further analysis with MULTISIG revealed a broad distribution of molar masses and this heterogeneity was further confirmed by sedimentation velocity. Conformation analyses with the Perrin P and viscosity increment ν universal hydrodynamic parameters indicated that the polymer had an elongated shape, with both factors giving consistent results and a consensus axial ratio of ~ 4.5. These collective properties-hydrogen bonding potential enhanced by an elongated shape, together with a small injectable molar mass-suggest this polymer is worthy of further consideration as a potential consolidant.

14.
Carbohydr Polym ; 253: 117277, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33278948

RESUMO

Thermoplastic, polysaccharide-based plastics are environmentally friendly. However, typical shortcomings include lack of water resistance and poor mechanical properties. Nanocomposite manufacturing using pure, highly linear, polysaccharides can overcome such limitations. Cast nanocomposites were fabricated with plant engineered pure amylose (AM), produced in bulk quantity in transgenic barley grain, and cellulose nanofibers (CNF), extracted from agrowaste sugar beet pulp. Morphology, crystallinity, chemical heterogeneity, mechanics, dynamic mechanical, gas and water permeability, and contact angle of the films were investigated. Blending CNF into the AM matrix significantly enhanced the crystallinity, mechanical properties and permeability, whereas glycerol increased elongation at break, mainly by plasticizing the AM. There was significant phase separation between AM and CNF. Dynamic plasticizing and anti-plasticizing effects of both CNF and glycerol were demonstrated by NMR demonstrating high molecular order, but also non-crystalline, and evenly distributed 20 nm-sized glycerol domains. This study demonstrates a new lead in functional polysaccharide-based bioplastic systems.


Assuntos
Amilose/química , Plásticos Biodegradáveis/química , Celulose/química , Nanocompostos/química , Nanofibras/química , Extratos Vegetais/química , Amilose/isolamento & purificação , Beta vulgaris/química , Celulose/isolamento & purificação , Cristalização , Farinha , Glicerol/química , Hordeum/química , Permeabilidade , Plastificantes/química , Maleabilidade , Amido/química , Resistência à Tração , Temperatura de Transição
15.
Macromol Rapid Commun ; 42(6): e2000321, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33249682

RESUMO

The versatility of the Passerini three component reaction (Passerini-3CR) is herein exploited for the synthesis of an amphiphilic diblock copolymer, which self-assembles into polymersomes. Carboxy-functionalized poly(ethylene glycol) methyl ether is reacted with AB-type bifunctional monomers and tert-butyl isocyanide in a single process via Passerini-3CR. The resultant diblock copolymer (P1) is obtained in good yield and molar mass dispersity and is well tolerated in model cell lines. The Passerini-3CR versatility and reproducibility are shown by the synthesis of P2, P3, and P4 copolymers. The ability of the Passerini P1 polymersomes to incorporate hydrophilic molecules is verified by loading doxorubicin hydrochloride in P1DOX polymersomes. The flexibility of the synthesis is further demonstrated by simple post-functionalization with a dye, Cyanine-5 (Cy5). The obtained P1-Cy5 polymersomes rapidly internalize in 2D cell monolayers and penetrate deep into 3D spheroids of MDA-MB-231 triple-negative breast cancer cells. P1-Cy5 polymersomes injected systemically in healthy mice are well tolerated and no visible adverse effects are seen under the conditions tested. These data demonstrate that new, biodegradable, biocompatible polymersomes having properties suitable for future use in drug delivery can be easily synthesized by the Passerini-3CR.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Animais , Doxorrubicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Reprodutibilidade dos Testes
16.
Chem Sci ; 12(3): 1016-1030, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34163868

RESUMO

Reversible addition-fragmentation chain transfer (RAFT) dispersion polymerisation of methyl methacrylate (MMA) is performed in supercritical carbon dioxide (scCO2) with 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) present as chain transfer agent (CTA) and surprisingly shows good control over PMMA molecular weight. Kinetic studies of the polymerisation in scCO2 also confirm these data. By contrast, only poor control of MMA polymerisation is obtained in toluene solution, as would be expected for this CTA which is better suited for acrylates. In this regard, we select a range of CTAs and use them to determine the parameters that must be considered for good control in dispersion polymerisation in scCO2. A thorough investigation of the nucleation stage during the dispersion polymerisation reveals an unexpected "in situ two-stage" mechanism that strongly determines how the CTA works. Finally, using a novel computational solvation model, we identify a correlation between polymerisation control and degree of solubility of the CTAs. All of this ultimately gives rise to a simple, elegant and counterintuitive guideline to select the best CTA for RAFT dispersion polymerisation in scCO2.

17.
J Mater Chem B ; 7(34): 5222-5229, 2019 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-31369021

RESUMO

A bis-epoxide monomer was synthesised in two steps from (R)-carvone, a terpenoid renewable feedstock derived from spearmint oil, and used to prepare ß-aminoalcohol oligomers in polyaddition reactions with bis-amines without requiring solvent or catalyst. A sub-set of the resultant materials were readily water soluble and were investigated for antifungal activity in combination with the fungicide iodopropynyl-butylcarbamate (IPBC) or the antifungal drug amphotericin B. The oligo-(ß-aminoalcohol)s alone were inactive against Trichoderma virens and Candida albicans but in combination with IPBC and amphotericin B demonstrated synergistic growth-inhibition of both fungi. Quantitative analysis showed that the presence of the terpene-based oligomers decreased the minimum inhibitory concentration (MIC) of IPBC by up to 64-fold and of amphotericin B by 8-fold. The efficacy of the combined formulation was further demonstrated with agar disk diffusion assays, which revealed that IPBC and amphotericin B reduced the growth of the fungi, as shown by zones of inhibition, to a greater extent when in the presence of the oligo-(ß-aminoalcohol)s. These data suggest potential future use of these renewable feedstock derived oligomers in antifungal material and related biomedical applications.


Assuntos
Aminas/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Resinas Epóxi/farmacologia , Terpenos/farmacologia , Trichoderma/efeitos dos fármacos , Aminas/química , Antifúngicos/química , Resinas Epóxi/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Terpenos/química
18.
Biomacromolecules ; 20(5): 2135-2147, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31013072

RESUMO

The precise synthesis of polymers derived from alkyl lactate ester acrylates is reported for the first time. Kinetic experiments were conducted to demonstrate that Cu(0) wire-catalyzed single electron transfer-living radical polymerization (SET-LRP) in alcohols at 25 °C provides a green methodology for the LRP of this forgotten class of biobased monomers. The acrylic derivative of ethyl lactate (EL) solvent and homologous structures with methyl and n-butyl ester were polymerized with excellent control over molecular weight, molecular weight distribution, and chain-end functionality. Kinetics plots in conventional alcohols such as ethanol and methanol were first order in the monomer, with molecular weight increasing linearly with conversion. However, aqueous EL mixtures were found to be more suitable than pure EL to mediate the SET-LRP process. The near-quantitative monomer conversion and high bromine chain-end functionality, demonstrated by matrix-assisted laser desorption ionization time-of-flight analysis, further allowed the preparation of innovative biobased block copolymers containing rubbery poly(ethyl lactate acrylate) poly(ELA) sequences. For instance, the poly(ELA)- b-poly(glycerol acrylate) block copolymer self-assembled in water to form stable micelles with chiral lactic acid-derived block-forming micellar core as confirmed by the pyrene-probe-based fluorescence technique. Dynamic light scattering and transmission electron microscopy measurements revealed the nanosize spherical morphology for these biobased aggregates.


Assuntos
Acrilatos , Lactatos/química , Polímeros/síntese química , Catálise , Cobre/química , Micelas , Polimerização , Polímeros/química
19.
J Pharm Sci ; 108(2): 811-814, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30267781

RESUMO

Chronic cancer pain remains prevalent and severe for many patients, particularly in those with advanced disease. The effectiveness of analgesic/adjuvant drug treatments in routine practice has changed little in the last 30 years. To address these issues herein, we have developed sustained-release poly(lactic-co-glycolic acid) microparticles of hydromorphone for intrathecal injection aimed at producing prolonged periods of satisfactory analgesia in patients, as a novel strategy for alleviation of intractable cancer-related pain. These hydromorphone-loaded microparticles were produced successfully using organic solvent-free supercritical fluid polymer encapsulation. Drug loading at 9.2% and encapsulation efficacy at 92% were achieved for particles in the desired size range (20-45 µm) with sustained release over a 5-week period in vitro.


Assuntos
Analgésicos Opioides/administração & dosagem , Preparações de Ação Retardada/química , Hidromorfona/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Analgésicos Opioides/química , Dor do Câncer/tratamento farmacológico , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Hidromorfona/química , Injeções Espinhais
20.
Biomacromolecules ; 20(1): 90-101, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-29870241

RESUMO

A Passerini three-component polymerization was performed for the synthesis of amphiphilic star-shaped block copolymers with hydrophobic cores and hydrophilic coronae. The degree of polymerization of the hydrophobic core was varied from 5 to 10 repeating units, and the side chain ends were conjugated by performing a Passerini-3CR with PEG-isocyanide and PEG-aldehyde (950 g/mol). The resulting amphiphilic star-shaped block copolymers contained thioether groups, which could be oxidized to sulfones in order to further tune the polarity of the polymer chains. The ability of the amphiphilic copolymers to act as unimolecular micellar encapsulants was tested with the water-insoluble dye Orange II, the water-soluble dye Para Red and the macrolide antibiotic azithromycin. The results showed that the new copolymers were able to retain drug cargo at pH levels corresponding to circulating blood and selectively release therapeutically effective doses of antibiotic as measured by bacterial cell kill. The polymers were also well-tolerated by differentiated THP-1 macrophages in the absence of encapsulated drugs.


Assuntos
Materiais Biocompatíveis/síntese química , Micelas , Nanopartículas/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Azitromicina/administração & dosagem , Azitromicina/química , Linhagem Celular , Liberação Controlada de Fármacos , Humanos , Monócitos/efeitos dos fármacos , Nanopartículas/efeitos adversos , Polietilenoglicóis/química , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...